STABILITY LIMITS OF ORTHOTROPIC SHALLOW SANDWICH SHELLS

B 1-02

- COMPUTATION AND TEST RESULTS -*

B. Geier and H. Klein
Institute of Structural Mechanics
DFVLR, Braunschweig, Germany

Abstract

This paper deals with a computer programme for
analysing bifurcation buckling and natural vibra-
tions of orthotropic shallow sandwich shells. The
programme is discussed briefly, and tests are de-
scribed which were initialised to check the compu-
ted buckling loads. From the first test results
conclusions are drawn concerning the significance
of computed buckling loads and the continuation of
the test programme.

I. Introduction

Many of the modern finite element computer pro-
grammes are capable of computing bifurcation buckl-
“ing loads of complex structures. As these tasks
Tead to eigenvalue problems, their solution re-
quires much more computation time than the calcu-
lation of stresses and deformations. Therefore,
only characteristic components of complex struc-
tures such as columns, plates, or shells are usual-
ly analyzed with respect to their buckling behav-
iour. It might-be doubted, that in this case gener-
al-purposé computer progfammes are best suited.
Special-purpose programmes might be more economic
tools.

It is well known that buckling loads of thin
shells under certain loading conditions, e.g. iso-
tropic cylinders subjected to axial load, may ex-
hibit a large amount of scatter, with average val-
ues far below the theoretical buckling loads. The-
oretical procedures must therefore be checked and
qualified by tests. '

This paper deals with a computer programme that

was particularly designed for bifurcation buckling,
" and natural vibrations, of orthotropic shallow

shells. It is believed that it requires a minimum
of data preparation. The programme was named BEOS,
which is an abbreviation for Buckling of Eccentri-
cally Orthotropic Sandwich Shells. Moreover, the
paper will outline a test programme initiated to
give experimental evidence to the validity of the
results of BEOS. Only a few tests could be perform-
ed so far. The results and consequences of these
will be discussed.

11. The Computer Programme BEOS

Scope of the Programme

The most general structure to which the pro-
gramme BEOS can be applied is a shallow sandwich
shell with two different orthotropic faces and an
orthotropic core (See Fig 1). '

\lORTHOTROPIC FACES
ORTHOTROPIC CORE

FIG.1: SHELL CONFIGURATION FOR COMPUTER
PROGRAMME BEOS.

* Dedicated to Prof. Dr.-Ing. W. Thielemann on the occasion of his 70th birfhday on Aug. 20th, 1978
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The plan view of the shell must be a parallelogram.
Widely spacedstiffeners running parallel to the
edges may be fixed to either of the shell faces.
The shell may be clamped or supported in different
directions along its edges and/or at discrete
points. Thus a variety of boundary conditions can
be regarded.

It is assumed that the prebuckling equilibrium
state, i.e. the distribution of membrane forces
within the shell, has been determined independent-
ly. Any distribution can be dealt with. The pro-
gramme will compute the factor by which this di-
stribution must be multiplied in order to get to
a bifurcation of equilibrium Another option will
cause the programme to analyze natural vibrations
about the specified equilibrium state. Several bi-
furcation points, or natural frequencies, can be
determined along with the corresponding deforma-
tion modes.

Theoretical Background. Shells are three-dimensio-
nal structures that are mentally reduced, for theo-
retical considerations and for ease of computation,
to two-dimensional ones. This aim is achieved by
means of certain assumptions concerning the vari-
ation of deflections along the normal direction.
Most widely used are the Kirchhoff-Love assump-
tions, the most significant of which specifies
that the normals to the shell remain normal at any
deformation. The deformation of the shell can then
be described completely by three functions of the
coordinates (x,y). These coordinates span the re-
ference surface of the shell, for which usually
the median surface will be taken. The three func-
tions are the displacements u,v in the tangential
directions and the normal displacement w. Thus the
Kirchhoff-Love shells have three functional de~
grees of freedom.

For sandwich shells this theory might be unsuffi
cient. Therefore, the programme BEQOS is based on
a more general theory utilizing five functional
degrees of freedom. The two additional freedoms
are the shear deformations of the sandwich core.
Alternatively they can be considered as functions
specifying the relative movements of the face
sheets. The deformation model is illustrated in
Fig. 2. For the face layers of the sandwich, the
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thickness of which may be of the same order as the
core height, the Kirchhoff-Love assumptions are

used. Thus the core couples the deformations of

two separate orthotropic shells that may have dif~-
ferent properties. In performing this action the
core height is preserved, but its deformation due
to transverse shear may be considerable. The theory
also takes into account the membrane forces and
bending moments transferred by the core. The defom-
ation model described admits that the normals to
the shell reference surface no longer remain
straight lines at deformation. They maybecome
broken lines connected at the interfaces between
core and face plies.
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FIG.2 .

DEFORMATION MODEL OF A SANDWICH SHELL WITH THICK
FACES

The computation method is based on an energy
formulation. The second variation of the total po-
tential energy II of a shell can be expressed as

§*I- [[s¢"ES€ ds - (1)
(s) :

= (38w, = 36w 3w, = [dEw|!
-a(.g[Nx(ax )+2ny ax 3y Ny 3y )]dS,
S being the referénce surface. g
This expression is twice the change of internal

" energy due to a small increment of deformation su-

perimposed on an equilibrium state.



The membrane forces of this equilibrium state are
Nk, Ngy, Ny, with N* and N positiv in compression.
Their contribution to the second variation of in-
ternal energy is given in the second term of Equ.
(1). The first term reflects the contribution of
the stress increments, which arise from the strain
increments §& . The matrix € is the stiffness
matrix transforming strains into stresses:

o=E¢g (2)

May it suffice here to mention that & is a gener-
alized strain vector the components of which are
the in-plane strains of the reference surface,
curvature changes, and transverse shear strains of
the core. Correspondingly, ¢ is a generalized
stress vector the components of which are membrane
forces, bending and twisting moments, and trans-
verse shear forces. For more detailed information
see references (1,2, 5

In order to find a numerical solution of the
variational problem

§(§*M=0 (3)

the buckling or vibration mode, i.e. the un-

known increments of the five functional degrees of
freedom, which are continous functions of (x,y),
must be expressed in terms of a finite number of
discrete unknowns. In accordance with the termino-
logy used in the Rayleigh-Ritz method, these un-
knownswill be called "generalized co-ordinates". .
In the finite element method the term "degrees of
freedom" is used alternatively. The discretisation
process is as follows:

A grid of lines running parallel to the edges
is used to divide the shell into subregions. The
values of the five deflection functions, their
first derivates in x- and y-direction, and the
mixed second derivative, at the corners of the
subregions, are used as generalized co-ordinates.
Bicubic polynomial interpolation is applied to
express the unkown functions in the interior of
each subregion. For each subregion the integrand
in Equ.1 can now be evaluated, and the integrations
can be performed. The contribution of stiffeners

to the functional &% IT s established by one-di-
mensional cubic interpolation. Summation over all
subregions yields the total value of &1I as a
quadratic form in the generalized co-ordinates.

In performing these operations, the generalized
co-ordinates known already due to boundary condi-
tions, are eliminated from the set of unknowns.

The operation of variation, Equ. 3, is equiva-
lent to differentation with respect to all these
variables. It leads to a general matrix eigenvalue
problem from which the eigenvalues and the corre-
sponding eigenvectors can be determined. In the
programme BEOS simultaneous vector iteration, as
described by Schwarz et.a].(4), is used for that
purpose. Clearly the procedure described is a spe-
cial variant of the finite element method. The fi-
nite element implied would have as many as 80
degrees of freedom, but establishing it explicitely
is avoided in the programme.

Examples. The application of BEOS will be illustra-
ted by means of two examples. The first one, taken
from ref. 5),15 a rectangular cylindrical shallow
sandwich shell with isotropic faces and an ortho-
tropic core, loaded by longitudinal compression

and shear.
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FIG.3 BUCKLING OF A SANDWICH SHELL SUBJECT
70 COMPRESSION AND SHEAR
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Fig 3 shows the dimensions of the shell, and the
results in the form of an interaction diagram. A
close inspection of the results reveals that the
interaction curve consists of two separate lines,
one connected with the two-Tlobe buckling mode 1 and
the other connected with a three-lobe buckling mode
2. Only the innermost portions of the curves are of
interest. At low values of N% mode 1 is relevant.
At larger values of N% a switch to mode 2 occurs.

The second example, Fig 4, was taken from ref (32
It served to check the programme with respect to
the effects of widely spaced stiffeners. Buckling
of an eccentrically stiffened full cylindrical
shell subject to axial compression was considered
by applying BEOS to a wave panel of the shell. From
an analysis of Singer and Haftka(G), the circumfer-

CROSS SECTIONAL
PROPERTIES

_ &R
T12{1-97)
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T=15b, -D

SINGER/
HAFTKA

BEOS .
2x3 3x5
17 643 17 636

RESULTS

P, -RIx-D)| 17 809

FIG. 4 BUCKLING OF A DISCRETELY STIFFENED CYLINDRICAL SHELL

ential wave number was known to be n = 12. The
panel considered is formed by a part of the shell
extending between two consecutive longitudinal nodal
Tines of the buckling mode. Classical simple sup-
port was assumed along the curved edges. As the
shell is not of sandwich construction, the optioh
for a Kirchhoff-Love shell analysis with only three
functional degrees of freedom was used. Because of
symmetry only a quarter of the wave panel was mo-
delled for BEOS with symmetry conditions (S) ap-
plied at the midlines, and antisymmetry conditions
(A) along the nodal line.

In the table at the bottom of Fig 4 the eigen~
values computed by BEOS for two different partiti-
ons are compared to Singer's and Haftka's results,
obtained with a Fourier expansion using 20 Terms
for each of the three deflectionsbu,6v,8w. Practi-
cally there is no difference between the three re-
sults.

111. The Test Programme

Preliminary Considerations

The scatter observed in buckling tests is due
to imperfections in shape, boundary support, and
load distribution. Shape imperfections can belkept
small in relation to the dimensions of the test
shell by using not too small test specimens. Many
years of experience with buckling tests on thin-
walled shells tought us that well-defined unique
edge conditions can best be obtained by stiff
clamping. But then some uncertainty arises as to
the distribution of membrane forces. This distri-
bution must therefore be determined by strain mea-
surements at a large number of points.

The Test Specimens

The test specimens have a quadratic plan view with

‘the fixed dimensions 800 x 800 mm?. They are cy-

Tindrically curved with the straight generators in
the direction of the main compression load. Three-
layer sandwich construction was chosen, (see Fig 5).
The core consists of 8 mm thick PVC-foam with a
density of 50 kg/m3. The face layers are built-up
of three thin plies of glass fabric reinforced
epoxy. For the inner and outer ply of each face
layer a nearly unidirectional fabric was used, with
93% of the fibres oriented paraliel to the gener-
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ators whereas for the intermediate plies bidirecti-
onal twill fabric was oriented at 45 degrees.

3 SURFACE ﬁ

LAYERS MADE
OF GLASS
FABRIC/EPOXY

CORE LAYER
MADE OF POLY
VINYL-CHLO=
RIDE FOAM

3 SURFACE
LAYERS MADE
OF GLASS

FABRIC/EPOXY %

FIG.5 THE CONSTRUCTION OF THE PANEL

e
"
e

-The panels are surrounded by 100 mm wide frames.
The face plies are continued into these frames, but
the foam core is replaced by chopped fibre mats.

At the curved edges mats are added below and above
such that the frame thickness is equal to the shell
rise.

The test specimens are molded in a die (See
Fig 6)
pressed against each other by clamps. The die is

the lower and upper parts of which are com-

put into an oven for curing at a temparature of
323 K for 15 hours.

FIG.6 DIE FOR MOLDING THE PANELS
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Measuring of Elastic Properties

The computation of buckling loads requires
knowledge of the stiffness matrix E in Equ. 1. In
principle the components of this matrix can be
computed from the geometry and the constituent
properties of the sandwich.However, we preferred
to determine experimentally the properties of the
face layers, the shear stiffness of the core, and
the bending stiffnesses of the sandwich in 0°- and
90°-direction. Thus only a few components of the
stiffness matrix E were not measured directly.

The sandwich faces have to be considered as or-
thotropic layers. The in-plane elastic properties
of such a layer are defined in the law

Ex| [A1m A O Tx

Ay A O P

€ y

y

Py 0 0 Ayl |Tuy

There are four independent coefficients Aij in the
compliance matrix, so at lTeast four independent
measurements have to be taken. We measured six
quantities in four types of tests, getting an op-
portunity for cross-checking the results. The test
types weré

1) Tension test (DIN 53455) with load in 0°-

direction, strain measurements in 0° and 90°

2) Tension test (DIN 53455) with load in 90°-
direction, strain measurements in 0° and 90°
Shear test (DIN 53399) with a 0°/90°-panel
Shear test (DIN 53399) with a + 45°-panel.

S W
~ ~—

Five complete samples were produced at five
different days, each sample consisting of 3 spe-
cimens for test types 1 and 2, and 4 specimens for
test types 3 and 4. In addition to the tests on
the face layers we performed the test types

5) Core shear sitffness test (DIN 53294)

6) Bending test (DIN 53293) in 0°-direction

7) Bending test (DIN 52293) in 90°-direction.

Within each sample 6 tests were performed of
type 5, and 3 of each of the types 6 and 7. The
scatter observed in these tests was smaller than
expected. A detailed report an the tests will be
published in the next time.



The Test Facility

The test facility shown in Fig 7 consists of
a cantilever box beam subiected to bending and
twist by means of two transverse shear forces ap-
plied at its free end. The test specimen forms part
of the compression flange of the box beam.

FIG.7 TEST FACILITY

As such it is loaded in a similar manner as a panel
in the wing of an airplane (Fig 8).

BOX BEAM
I |
1 Y
PANEL
HYDRAULIC
CYLINDER
Y
FIG.8

LOAD APPLICATION TO THE PANEL IN A WING
AND IN THE TEST

The test specimen is mounted on the box beam by
120 bolts screwed through the surrounding frame.
Moreover, the frame is embedded in a mixture of
epoxy and a filler. This mixture hardens after the
panel has been bolted. Fig 9 shows the test spe-

cimen mounted to the box beam.

FIG.9 TEST SPECIMEN AFTER MOUNTING

For load application two hydraulic cylinders with
a maximum load capacity of 100 MN are used. They
will be controlled in the manner of a master-slave
relation. The pressure in the master cylinder is
controlled by the operator until it exerts a certain
force or deflection, and the slave cylinder is
controlled automatically so that a prescribed angle

of twist is maintained at the free end of the can-
tilever box beam.

During the test the load has to be applied in
steps in order to have sufficient time to take the
strain measurements at constant loading. The re-
sulting transverse load, the torque moment, the
transverse deflection and the angle of twist at the
free end can be plotted during the test on an x-y-
recorder. These values are also digitized together
with the strain gauge readings and put out serially
on perforated paper tape. Presently 50 rosette strain
gauges 0°/45°/90° are applied to each panel, 25 on
either side. The first strain measurements are
taken before and after mounting of the panel. Thus
strains that may arise during mounting can be taken
into account in the test evaluation.

Evaluation of Test Data
For evaluation of the test data a computer pro-

gramme was written. It reads the paper tape with
the raw data obtained during testing. Additional
information, as stiffness coefficients, calibration
factors, and location of strain gauges, is read
from a separate input file. The programme computes,
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for each load step, the resulting transverse load,
the transverse deflection, the torque, and the
angle of twist at the free end of the box beam, as
well as the strains taking into account their ini-
tial values due to mounting. Having determined the
strains, the programme computes the stresses in
the face layers 7 .

A complete test log with all measured forces,
displacement stresses and strains is compiled.
Moreover the programme creates a plot file for gra-
phic representation of the stresses as functions of
the deflection of the master hydraulic cylinder.
The two stresses determined on opposite face layers
at the same location and direction are plotted in
one frame. It was expected that this graphic pre-
sentation would facilitate the detection of in-
cipient buckling, because the two stress curves
" should deviate from each other due to increasing
bending action, as shown in Fig 10.

UPPER SURFACE

o

BEAM DEFLECTION

BUCKLING LOAD

LOWER SURFACE

FIG. 10
EXAMPLE OF CORRESPONDING STRESSES AT THE
UPPER AND THE LOWER SURFACE

IV. Test Report

Observations and Results

Two specimens could be tested so far. They only
differed with respect to their rise, or radius of
curvature. The values are given in the following
table:

Shell No. Shell rise Radius of Curvature
1 25 mm 3212 mm
2 12,5 mm 6406 mm
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The cantilever box beam was loaded such that the
angle of twist was zero. Thus pure compressive
loading of the test specimen was to be expected.
The stress measurements revealed, however, that a
considerable account of shear was present in addi-
tion to compression,

No distinct buckling process with appearance of
deep buckles could be observed. The most signifi-
cant sign was an acoustic one, a slight "bang".
Later on, buckles became visible. On the stress
plots a buckling load could be identified only
with the first shell (See Fig 10). The stress
plots of the second test showed only slight irre-
gularities at the point where the "bang" occured.
The loading applied to the box beam increased far
beyond the buckling load in both tests. Of course,
this was to be expected, since stress can be
shifted from the buckled shells to the surround-
ing frame. However, even the buckled panels them-
selves were able to transmit increased forces.
This can easily be concluded from the stress mea-
surements, showing that the mean stresses, or
membrane forces, continued to increase.

The following values of the membrane forces. just

prior to the observed points of buckling were de-
termined from the strain gauge readings:

Shell No 1, Membrane forces in N/mm, X,y in.mm, .

xS -360 | -180 | o +180 +360
Ny = 95,9 | 92,4 | 91,7 | 90,3 91,0

-360 | N, = 43,4 | 42,7 | 42,0 | 44,1 45,5
Ny = 0.0 0,0 0,0 0,0 0,0

63,0 | 84,0 | 85,4 | 81,9 71,4

-180 35,0 | 42,0 | 42,0 | 40,6 37,1
0,0 | 0,0 0,0 0,0 0,0

62,3 | 70,0 | 72,8 | 74,2 71,4

0 31,5 | 37,1 | 40,6 | 37,1 29,4
0,0 0,0 | 0,0 0,0 0,0

55,3 1 73,5 | 76,3 | 72,1 70,0

+180 30,8 | 37,1 | 40,6 | 33,6 26,6
0,0 | 0,0 0,0 0,0 0,0

50,4 | 70,7 | 75,6 | 73,5 73,5

+360 17,5 | 25,9 | 26,6 | 28,0 28,0
0,0 | 0,0 0,0 0,0 0,0




Shell No 2
y

X =360 -180 0 +180 +360
Nx = 44,5 { 41,6 { 36,1 37,8 40,3
-360 ny= 22,3 | 17,8 | 14,4 15,8 17,7
Ny = 6,9 4,7 5,3 5,0 - 0,7
29,9 | 33,1 | 33,8 36,5 30,1
-180 20,0 | 19,9 | 17,3 18,3 13,3
- 0,6 [ -1,4 0,1 -0,5 -1,1
26,3 | 32,0 | 31,7 31,4 24,3
0 18,5 ] 21,0 | 19,0 19,3 12,6
-1,7 | -4,1 -3,3 -4,9 -4,0
22,6 | 28,6 | 28,6 .1 30,1 23,9
+180 15,1 | 18,6 | 18,0 17,3 12,9
-3,5 | -4,0 | -3,7 -3,1 -1,7
32,4 | 28,1 28,7 31,5 27,5
+360 16,8 | 14,2 | 13,7 13,8 13,4
0,5 1,4 1,6 3,2 2,5

Comparison with Theory

The membrane forces measured prior to buckling,
were input to the programme BEOS. From the stiff-
ness measurements, the following values of‘extensi-
onal stiffnesses Bij and bending stiffness Kij were
determined

811 = 39 743 N/mm B12 = 8577 N/mm
822 = 20 512 " 833 = 8 347 "
K11 = 657 600 N mm Kjp = 141 912 N mm
K22 = 339 398 " K33 = 138 112 "

and used in the computation. The three lowest eigen-
values were computed as factors to be applied to
the given distribution of membrane stresses.

For the first specimen the eigenvalues were
11 = 0.61 , &2 = 0.63 , l3 = 0.84 .

Consequently, due to theoretical predictions,
buckling should have occured already at about sixty
per cent of the observed buckling load.

After the test the panel was removed from the
test facility, but later it was mounted again and
tested once more. The stress distribution measured
prior to buckling was different from that‘deter-
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mined in the first test (and presented in the
table}. With the new distribution the eigenvalues
computed by BEOS were

Ay = 1.09 , 12 =1.11, Agy = 1.48 .

This time the agreement between theory and test

~ was nearly perfect.

For the second test specimen the computed eigen-
values were

Ay =122, A, =1.24 , 2, =1.80.

3

Comparison with the eigenvalues determined for the
stress distribution of the first test with test
specimen No. 1 reveals the astonishing result

that they differ by a factor 2. It has to be suspec-
ted that the stress measurements in the first test
were in error by this factor. Unfortunately the
measurements could not be traced back so far, that
this suspicion could be proved, or denied, con-
clusively.

For the further discussion of the results we
dare to be optimistic, assuming that the membrane
forces measured in the first test should be halved,
so that the computed eigenvalues have to be doubled.
We then have the result, that in the computations
the buckling load is over-estimated by 9 to 22 per
cent, which is very satisfactory in shell .buckling

The buckling tests performed so far were satis-
factory with respect to the aim of providing ex-
perimental support to the theoretical results ob-
tained with the computer programme BEOS.Howaver,
they were unsatisfactory with respect to the signi-
ficance of buckling as a failure phenomenon. This
is mainly due to the mild buckling of the tested
panels. In Fig 11 the conceptual buckling behaviaur
of two panels with different curvature is depicted.
Their buckling behaviour is totally different. The
flat panel has a low buckling load, but it can
carry loads far above its bifurcation buckling
load. Imperfections will round-off the "knee" so
that for realistic shells the theoretical bifur-
cation buckling Toad is of no significance at all.
The pané1 will fail eventually by exceeding the
material strength or by secondary buckling. In any



N S [} J BIFURATION
Loap | PANEL FaTLURE FAILURE
// PERFECT PANEL
1#/~ACTUAL ACTUAL
] IMPERFECT IMPERFECT
N\ PANEL PANEL
BIFURATION
— -
SHORTENING AL SHORTHENING AL
FLAT PANEL CURVED PANEL

FI1G.11 CONCEPTUAL BUCKLING BEHAVIOUR
OF PANELS WITH DIFFERENT CURVATURE

case a theoretical treatment would have to go far
into the non-linear postbuckling region, and the
prediction of failure would be very uncertain.
Tests should therefore be made with specimens the
dimensions of which are close to the dimensions of
actual structures.

On the other hand, for curved panels that can-
not carry considerable loads in the postbuckling
region, the bifurcation buckling loads might be
useful for estimating the load carrying capacity.
Model tests for selected parameters will be suffi-
cient, since a computer programme can be used for
the practical structures. But here another pheno-
menon may limit the applicability of computed buckl-
ing loads for failure prediction. If the postbuckl-
ing curve descends to steeply, the imperfections
may cause the panels to fail at Toads considerably
below the bifurcation buckling load.

We may conclude, therefore, that a.computer. pro-
gramme for bifurcation buckling loads is useful only
if these loads may be used to estimate closely the
load carrying capacity of the structures. This can
‘be done if the postbuckling equilibrium states do

not admit increase of loads far beyond the bifurca- -

tion load. It would be worth while to add programme
features providﬁng information about the initial
postbuckling path by evaluating Koiter's(s) theoryof
initial postbuckling behaviour. A comprehensive re-
view of this theory was presented by BUdiansky(g).

This theory will yield valuable information as long

as the postbuckling paths do not ascend or descend
‘steeply. In this latter case methods for analyzing
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highly developed postbuckling states would be re-
quired.

For the continuation of our test programme it
will be necessary to search for shell geometries,
which will exhibit a proper postbuckling behaviour.
Additional analytical studies will be required for
this purpose. The postbuckling behaviour of curved
pane]s(9 , and even of sandwich panels 10 has al-
ready been analyzed. However, these investigations
were disregarded so far, because the boundary con-
ditions and stiffness properties considered in
these papers were different from those prevailing
in our test specimens.

The tests have confirmed again, that modern me-
chanics know the means for analyzing properly the
structural behaviour of orthotropic sandwich shells.
This will be valid also for our next steps, viz.
the determination of their behaviour in the post-
buckling regime.
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